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Appendix A:  What the Travel Literature Tells Us1 
Some of today’s most vexing problems—sprawl, congestion, oil dependence, climate 
change—are prompting states and localities to turn to land planning and urban design to 
reign in automobile use.  Many have concluded that roads cannot be built fast enough to 
keep up with rising travel demands induced by road building itself and the sprawl it 
spawns.   

The purpose of this meta-analysis is to summarize empirical results on associations 
between built environments and travel, especially non-work travel.  A number of studies, 
including Crane (1996), Cervero and Kockelman (1997), Kockelman (1997), Boarnet and 
Crane (2001), Cervero (2002), Zhang (2004), and Cao et al. (2009b), provide economic 
and behavioral explanations on why built environments might be expected to influence 
travel choices.  We accept these explanations and instead focus on measuring the 
magnitude of relationships.    

Why another review of this literature on built environments and travel, one might ask? 
There are four reasons for this meta-analysis: the need to quantify effect sizes, the need to 
update earlier work, the need to expand to other outcome measures, and the need to 
address the methodological issue of self-selection. 

Quantifying Effect Sizes 

Existing surveys seldom generalize across studies or make sense of differing results.  
Readers are left with glimpses of many trees rather than a panoramic view of this 
complex and rich forest of research.  A meta-analysis, by its nature, reduces many studies 
to a single bottom line. 

A literature review by Ewing and Cervero (2001) derived composite elasticities by “eye 
balling” rather than weighted averaging. It was an inherently imprecise process. 

Updating Earlier Work 

The number of built environment-travel studies now exceeds 200, most having been 
completed since our 2001 review.  Compared to earlier studies, these newer ones have 
estimated effects of more environmental variables simultaneously (including a 5th D, 
distance to transit), controlled for more confounding influences (including traveler 
attitudes and residential self-selection), and used more sophisticated statistical methods.  
                                                 
1 This appendix is taken from Ewing, R., & Cervero, R. (2010). Travel and the built 
environment—A meta-analysis. Journal of the American Planning Association, 76(3), 
265-294. 
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In response to the U.S. obesity epidemic, the public health literature has begun to link 
walking to dimensions of the built environment.  The first international studies have 
appeared using research designs similar to those of U.S. studies.  This collective and 
enlarged body of research provides a substantial database for a meta-analysis.   

Extending to Other Travel Outcomes 

The transportation outcomes we studied in 2001,  vehicle miles traveled (VMT) and 
vehicle trips (VT), are critically linked to traffic safety, air quality, energy consumption, 
climate change, and other social costs of automobile use.  However, they are not the only 
outcomes of interest.  Walking and transit use have implications for mobility, livability, 
social justice, and public health. The health benefits of walking, in particular, are widely 
recognized (Badland and Schofield 2005; Cunningham and Michael 2004; Frank 2000; 
Frank and Engelke 2001; Humpel et al. 2002; Kahn et al. 2002; Krahnstoever-Davison et 
al. 2006; Lee and Moudon 2004; McCormack et al. 2004; Transportation Research Board 
2005; Owen et al. 2004; Saelens and Handy 2008; Trost et al. 2002). Transit use is less 
obviously related to public health, but it still classified as active travel since it almost 
always requires a walk at one or both ends of the trip (Besser & Dannenberg, 2005; 
Edwards, 2008; Zheng, 2008).  So to VMT, we add walking and transit use as outcomes 
of interest. 

Addressing Self-Selection 

More than anything else, the possibility of self-selection bias has engendered doubt about 
the magnitude of travel benefits associated with compact urban development patterns. 
According to a National Research Council report (2005), “If researchers do not properly 
account for the choice of neighborhood, their empirical results will be biased in the sense 
that features of the built environment may appear to influence activity more than they in 
fact do. (Indeed, this single potential source of statistical bias casts doubt on the majority 
of studies on the topic to date.)”  

At least 38 studies using nine different research approaches have attempted to control for 
residential self selection (Mokhtarian and Cao 2008; Cao et al. 2009a). Nearly all of them 
found “resounding” evidence of statistically significant associations between the built 
environment and travel behavior, independent of self-selection influences (Cao et al. 
2009a, p. 389).  However, nearly all of them also found that residential self selection 
attenuates the effects of the built environment.  

Using travel diary data from the New York-New Jersey-Connecticut regional travel 
survey, Salon (2006) concluded that the effect of the built environment itself accounted 
for 1/2 to 2/3 of the total effect of a change in population density on walking level in 
most areas of New York City.  Using travel diary data from the Austin travel survey, 
Zhou and Kockelman (2008) found that the built environment itself accounted for 58% to 
90% of the “total” influence of residential location on VMT, depending on model 
specifications.  Using travel diary data for four traditional and four suburban 
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neighborhoods in Northern California, Cao (2009) reported that that, on average, the 
causal influences of neighborhood type account for 61% of the total effect of the built 
environment on utilitarian walking frequency and 86% of the total effect on recreational 
walking frequency.  Using data from a regional travel diary survey in Raleigh, NC, Cao 
et al. (2009c) estimated that anywhere from 48% to 98% of the difference in vehicle 
miles driven was due to direct environmental influences, the balance being due to self-
selection; the percentage varied between pairs of locations (urban vs. suburban, urban vs. 
exurban). 

So while the environment may play a more important role in travel behavior than do 
attitudes and residential preferences, both effects are present. 
 

Five Ds of the Built Environment 

The potential to moderate travel demand through changes in the built environment is the 
most heavily researched subject in urban planning.  In travel research, urban development 
patterns have come to be characterized by “D” variables. The original “three Ds,” coined 
by Cervero and Kockelman (1997), are density, diversity, and design. The Ds have 
multiplied since Cervero and Kockelman’s original article, with the addition of 
destination accessibility and distance to transit (Ewing and Cervero 2001; Ewing et al. 
2009). Demand management, including parking supply and cost, is a sixth D, included in 
a few studies.  While not part of the environment, demographics are the seventh D in 
travel studies, controlled as confounding influences. 

Density is measured in terms of activity level per unit area. It can be measured on gross 
or net area basis, on a population or dwelling unit basis, and on an employment or 
building area basis.  Population and employment density are two distinct dimensions.  
The two are sometimes summed to compute an overall “activity density.” 

Diversity is related to the number of different land uses in an area and the degree to 
which they are represented in land area, floor area, or employment. Entropy measures of 
diversity, wherein low values indicate single-use environments and larger ones denote a 
variety of land uses, are widely used in travel studies.  Job-to-housing or job-to-
population ratios are less frequently used.  What Handy (1993) refers to as local 
accessibility is part of diversity.  It is measured by distance from home to the closest store 
or other local trip attraction. 

Design includes street network characteristics within a neighborhood. Street networks 
vary from dense urban grids of highly interconnected, straight streets to sparse suburban 
networks of curving streets forming “loops and lollipops.” Street accessibility usually is 
measured in terms of average block size, proportion of four-way intersections, or number 
of intersections per square mile. In the occasional study, design also is measured in terms 
of sidewalk coverage, building setbacks, streets widths, pedestrian crossings, presence of 
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street trees, or other physical variables that differentiate pedestrian-oriented environments 
from auto-oriented ones.  

Destination accessibility is synonymous with access to trip attractions.  In some studies, 
destination accessibility is simply represented by distance to the central business district.  
In other studies, it is represented by the number of jobs or other attractions reachable 
within a given travel time, which tends to be highest at central locations and lowest at 
peripheral ones.  The gravity model of trip attraction measures destination accessibility. 

Distance to transit usually is measured from home or work to the nearest rail station or 
bus stop by the shortest street route. Distance to transit also may be represented by transit 
route density, stop spacing, or by the presence of stations within the zone or buffer area.   

Note that the Ds are rough categories, divided by ambiguous and unsettled boundaries 
that may change in the future. Some dimensions overlap (e.g., density and destination 
accessibility).  Regardless, it is useful to aggregate empirical results on the influences of 
each of the D variables on travel, if only to help organize the literature and provide order-
of-magnitude insights.   

Literature 

Qualitative Reviews 

There are at least 12 surveys of the literature on the built environment and travel (Badoe 
and Miller 2000; Cao et al. 2009a; Cervero 2003; Crane 2000; Ewing and Cervero 2001; 
Handy 2006; Heath et al. 2006; McMillan 2005; McMillan 2007; Pont et al. 2009; 
Saelens et al. 2003; Stead and Marshall 2001).  There are another 13 surveys of the 
literature on the built environment and physical activity, including walking and bicycling 
(Badland and Schofield 2005; Cunningham and Michael 2004; Frank 2000; Frank and 
Engelke 2001; Humpel et al. 2002; Kahn et al. 2002; Krahnstoever-Davison et al. 2006; 
Lee and Moudon 2004; McCormack et al. 2004; National Research Council 2005; Owen 
et al. 2004; Saelens and Handy 2008; Trost et al. 2002).  There is considerable overlap 
among these reviews, particularly where they share authorship as with the two reviews by 
McMillan and the National Research Council and Saelens and Handy reviews.  The 
literature is now so vast it has produced two reviews of the many reviews (Bauman and 
Bull 2007; Gebel et al. 2007).  

Weighing the evidence, what can be said , about measured  associations between D 
variables of the built environment and key travel “outcome” variables: trip frequency, 
trip length, mode choice, and composite measure of travel demand, vehicle miles traveled 
(VMT)?  These are the most common outcomes modeled, and hence their relationships 
can be described with more confidence than can, for example, the relationship of the built 
environment to trip chaining in multipurpose tours or internal capture of trips within 
mixed use developments.  
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We draw on the survey by Ewing and Cervero (2001) for this qualitative description. Trip 
frequencies are primarily a function of socioeconomic characteristics of travelers and 
secondarily a function of the built environment; trip lengths are primarily a function of 
the built environment and secondarily of socioeconomic characteristics; and mode 
choices depend on both (though probably more on socioeconomics).  VMT and VHT also 
depend on both. 

Trip lengths are generally shorter at locations that are more accessible, have higher 
densities, or feature mixed uses. This holds true for both the home end (that is, residential 
neighborhoods) and destination end (activity centers) of trips. The dominant 
environmental effect on trip lengths is destination accessibility. 

Transit use varies primarily with local densities and secondarily with the degree of land- 
use mixing. Some of the density effect is, no doubt, due to better walking conditions, 
shorter distances to transit service, and less free parking. Walking varies as much with the 
degree of land use mixing as with local densities. 

The third D—design—has a more ambiguous relationship to travel behavior than do the 
first two. Any effect is likely to be a collective one involving multiple design features. It 
also may be an interactive effect with other D variables. This is the idea behind 
composite measures such as Portland, Oregon’s “urban design factor.” The urban design 
factor is a function of intersection density, residential density, and employment density. 

Readers are referred to the other reviews cited above for a more complete picture of built 
environmental relationships.  The physical activity literature, in particular, is quite 
distinct from the travel literature summarized by Ewing and Cervero (2010).  There is 
little doubt that utilitarian travel and leisure-time physical activity are subject to different 
influences. 

Earlier Quantitative Synthesis 

Using 14 travel studies that included sociodemographic controls, Ewing and Cervero 
(2001) synthesized the literature by extracting elasticities of VMT and vehicle trips (VT) 
with respect to the first four Ds—density, diversity, design, and destination accessibility. 
These summary measures were incorporated into the EPA’s Smart Growth Index (SGI) 
model, a widely used sketch planning tool for travel and air quality analysis. In the SGI 
model, density is measured in terms of residents plus jobs per square mile; diversity in 
terms of the ratio of jobs to residents relative to the regional average; and design in terms 
of street network density, sidewalk coverage, and route directness (two of three measures 
relating to street network design).  

Table A-1 presents the average elasticities computed in our 2001 study.  These 
elasticities, for example, suggest a doubling of neighborhood density results in 
approximately a 5 percent reduction in both VT and VMT per capita, all else being equal. 
Note that the elasticity of VMT with respect to destination accessibility is much larger 
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than the other three, suggesting that areas of high accessibility—such as center cities—
may produce substantially lower VMT than dense mixed-use developments in the exurbs. 

In addition to simply eyeballing elasticities, and relying on only 14 studies, the 2001 
review aggregated results for often dissimilar environmental variables (e.g., entropy and 
jobs-housing balance as measures of local diversity).  This update involves the weighted 
averaging of results from more studies for more uniformly defined built environmental 
variables.   

Table A-1. Typical Elasticities of Travel with Respect to Four D Variables (Ewing and 
Cervero 2001) 

 
Vehicle Trips 

(VT) 

Vehicle Miles Traveled 

(VMT) 

Local density – .05 – .05 

Local diversity (mix) – .03 – .05 

Local design – .05 – .03 

Regional accessibility   .00 – .20 

 

Meta-Analyses in Planning 

Unlike traditional research methods, meta-analysis uses summary statistics from 
individual primary studies as the data points in a new analysis. From the standpoints of 
validity and reliability, this practice has both strengths and weaknesses.  Every standard 
textbook on meta-analysis lists both (Lipsey and Wilson 2001; Hunter and Schmidt 2004; 
Schulze 2004; Littell et al. 2008; Borenstein et al. 2009). 

The appeal of meta-analysis is that it aggregates all available research on a topic, 
allowing common threads to emerge. Pooling of samples provides the basis for greater 
generalizability.  Meta-analysis is particularly appropriate where research outcomes are 
to be compared.  

Meta-analysis has its drawbacks too.  The combining of ”strong” and “weak” studies has 
the potential to contaminate results. Further, meta-analysis inevitably mixes “apples and 
oranges” due to the variation among studies in modeling techniques, independent and 
dependent variables, and sampling units. As studies are increasingly segmented in an 
effort to achieve consistency within categories, sample sizes can become small.  With 
small sample sizes, statistical reliability becomes questionable, which we admit 



 7

characterizes some of the breakdowns presented in this paper.  In this sense, we hope that 
stratifying the results provide a baseline from which future studies can augment the 
small-sample results presented in this article.  Lastly, the studies for a meta-analysis are 
usually chosen through a literature review. An inherent selection bias (called publication 
bias) may arise, since studies may tend to be published more readily if they show 
statistical significance (Rothstein et al. 2005).  Publication bias may inflate effect size 
estimates in absolute terms.  

Publication bias is minimized in this meta-analysis by searching the “gray literature” for 
unpublished reports, pre-prints, and white papers.  Google Scholar and TRIS were 
particularly helpful in this search.  The apples-oranges problem is minimized by focusing 
on a subset of studies that employed disaggregate data and comparably defined variables.  
This meta-analysis reflects tradeoffs.  In an effort to avoid publication bias, we may have 
exacerbated the strong-weak study problem.  In an effort to achieve greater construct 
validity by segmenting studies by variable type, this meta-analysis ends up with small 
sample sizes for dependent-independent variable pairs. 

More than a dozen studies have applied meta-analytical methods to the urban planning 
field (Babisch, 2008; Bartholomew & Ewing, 2008; Bunn et al. 2003; Button & Kerr, 
1996; Button & NƋkamp, 1997; Cervero, 2002; Debrezion et al., 2003; Duncan et al., 
2005;  Graham & Glaister, 2002; Hamer and Chida, 2008; Leck, 2006; Lauria & Wagner, 
2006; NƋkamp & Pepping, 1998; Smith & Kaoru, 1995; Stamps, 1990; Stamps, 1999; 
Zhang 2009). Bartholomew and Ewing (2008) combined results from 23 recent scenario 
planning studies to calculate the impacts of land-use changes on transportation 
greenhouse gas emissions. Button and Kerr (1996) explored the implications of urban 
traffic restraint schemes on congestion levels. Cervero (2002) synthesized the results of 
induced travel demand studies. Debrezion et al. (2003) measured the impact of railway 
stations on residential and commercial property values. NƋkamp and Pepping (1998) 
analyzed critical success factors in sustainable city initiatives. Smith and Kaoru (1995) 
calculated the public’s willingness to pay for cleaner air. Stamps (1990 & 1999) applied 
meta-analysis to the visual preference literature.  

Most relevant to the present study, Leck (2006) identified 40 published studies of the 
built environment and travel, and selected 17 that met minimum methodological and 
statistical criteria. While this meta-analysis stopped short of estimating average effect 
sizes, it did evaluate the statistical significance of relationships between the built 
environment and travel. Residential density, employment density, and land-use mix were 
found to be inversely related to VMT at the p < 0.001 significance level. 

Approach 

Sample of Studies 

Studies linking the built environment to travel were identified as follows.  Academic 
Search Premier, Google, Google Scholar, MEDLINE, PAIS International, PUBMED, 
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Scopus, TRIS Online (National Transportation Library), TRANweb, Web of Science, and 
ISI Web of Knowledge databases were searched using the key words “built 
environment,” “urban form,” and “development,” coupled with keywords “travel,” 
“transit,” and “walking.”  CDs of the Transportation Research Board’s annual programs 
were reviewed for relevant papers.  All leading researchers in this subject area were 
contacted for copies of their latest research.  A call was put out for built environment-
travel studies on the academic planners’ listserve, PLANET.   The bibliographies of the 
previous literature reviews were examined to identify other pertinent studies.  

As a resource for readers, the bibliography of this article lists more than 200 studies that 
relate, quantitatively, characteristics of the built environment to measures of travel.  From 
the universe of built environment-travel studies, effect sizes were computed for more 
than 50 studies (see Table A-2).  These studies have several things in common.  As they 
analyze effects of the built environment on travel choices, all selected studies control 
statistically for confounding influences on travel behavior, in particular, 
sociodemographic influences.  They use different statistical methods because the 
outcome variables differ from study to study.1  All apply statistical tests to determine the 
significance of the various effects.  Almost all are based on good size samples (see 
Appendix).  Most capture the effects of more than one D variable simultaneously.  And 
most importantly, what distinguishes these studies from the others is the availability of 
data with which to compute effect sizes. 

Many quantitative studies were not selected for one reason or another: 

x Many studies failed to publish average values of dependent and independent 
variables from which point elasticities could be calculated.  Follow-up contacts 
were made with authors in an effort to obtain these descriptive statistics.  In many 
cases, the research was several years old, and authors had moved on to other 
subjects.  In a few cases, it proved impossible to even track down authors, or get 
them to respond to repeated data requests. 

x Many studies have used highly aggregated data, at the city, county, or 
metropolitan level (e.g., Newman and Kenworthy 2006; van de Coevering and 
Schwanen 2006).  Such studies have limited variance of both dependent and 
independent variables to explain relationships.  Their causal and associative 
inferences are threatened by the so-called ecological fallacy.   

x Several studies used statistical methods from which summary effect size measures 
could not be calculated.  Included are studies using structural equation models to 
capture complex interactions among built environment and travel variables (e.g., 
Bagley and Mokhtarian 2002; Cao et al. 2007; Cervero and Murakami, 2010). In 
SEM, there are multiple influences of the same independent variable via different 
equations, which have to be aggregated into a single elasticity. Doing that with 
coefficients and mean values is not sufficient because of the nonlinearity of the 
interactions between the equations. 2   
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x Many studies were excluded because they deal with limited populations or trip 
purposes (e.g., Chen and McKnight 2007; Li et al. 2005; Waygood et al. 2009).  
Notably, several recent studies of student travel to school cannot be generalized to 
other populations and trip purposes.  The literature suggests that students’ (or 
their parents’) choice of mode for the journey to school is based on very different 
considerations than other trip making (Ewing et al. 2004; Yarlagadda & 
Srinivasan 2008). 

x Some studies were excluded because they characterize the built environment 
subjectively rather than objectively, that is, in terms of qualities perceived and 
reported by travelers rather than measured by researchers (e.g., Craig et al. 2002; 
Handy et al. 2005).  This is common among public health studies.  While 
perceptions are important, they differ from objective measures of the built 
environment and arguably are less readily influenced by planners or public policy 
makers (McCormack et al. 2004; McGinn et al. 2007; Livi-Smith 2009).  For 
studies that include both types of measures, relationships were analyzed only for 
objective measures. 

x Finally, several otherwise worthy studies were excluded because they created and 
then applied built environmental indices without true zero values (for example, 
indices derived through factor analysis).  There is no defensible way to compute 
elasticities, the common currency of this article, for such studies (e.g., Estupinan 
and Rodriguez 2008; Frank et al. 2007; Levi-Smith 2009).  For the same reason, 
several excellent studies were excluded because their independent variables, 
though initially continuous, were reduced to categorical variables to simplify the 
interpretation of results (Lee and Moudon 2006b; Oakes et al. 2007; McGinn et 
al. 2007).  

Studies using nominal variables to characterize the built environment were analyzed 
separately from those using continuous variables.  Such studies distinguish between 
traditional urban and conventional suburban development, or between transit-oriented 
and auto-oriented development.  To be included, studies had to analyze disaggregate data 
and control for individual socioeconomic differences across their samples, thereby 
capturing the marginal effects of neighborhood type.3 

 

Table A-2.  Sample of Studies 

 study sites Data methods controls self-
selection*  

Bento et al. 2003 
Nationwide Personal 
Transportation Survey 
(114 MSAs) 

D LNR/LGR SE/LS/OT no 
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Bahtia 2004 20 communities in 
Washington DC A LNR SE no 

Boarnet et al. 2004 Portland  D LNR/PRR SE/OT no 

Boarnet et al. 2008 Portland  D TOR SE yes 

Boarnet et al. 2009 8 neighborhoods in 
Southern California D NBR SE no 

Cao et al. 2006 6 neighborhoods in 
Austin D NBR SE/AT yes 

Cao et al. 2009b 8 neighborhoods in 
Northern California D SUR SE/AT yes 

Cao et al. 2009c Raleigh, NC D PSM SE/AT yes 

Cervero 2002 Montgomery County, 
MD D LGR SE/LS no 

Cervero 2006 225 LRT stations in 
11 metropolitan areas A LNR ST/LS no 

Cervero 2007 26 TODs in five 
California regions D LGR SE/ 

LS/WP/AT yes 

Cervero and 
Duncan 2003 San Francisco Bay D LGR SE/OT no 

Cervero and 
Duncan 2006 San Francisco Bay D LNR SE/WP no 

Cervero and 
Kockelman 1997 

50 neighborhood in 
San Francisco Bay D LNR/LGR SE/LS no 

Chapman and 
Frank 2004 Atlanta D LNR SE no 

Chatman 2003 Nationwide Personal 
Transportation Survey D TOR SE/WP no 

Chatman 2008 San Francisco/San 
Diego D LNR/NBR SE/LS/OT no 
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Chatman 2009 San Francisco/San 
Diego D NBR SE/LS/OT/AT yes 

Ewing et al. 1996 Palm Beach 
County/Dade County D LNR SE no 

Ewing et al. 2009 52 MXDs in Portland D HLM SE no 

Fan 2007 Raleigh-Durham D LNR SE/LS/OT/AT yes 

Frank et al. 2005 Seattle D LNR SE/LS no 

Frank et al. 2007 Seattle D LGR SE/LS no 

Frank et al. 2009 Seattle D LNR SE no 

Greenwald 2009 Sacramento D LNR/TOR/NBR SE no 

Greenwald and 
Boarnet 2001 Portland D OPR SE/LS no 

Handy and Clifton 
2001 

6 neighborhoods in 
Austin D LNR SE no 

Handy et al. 2006 8 neighborhoods in 
Northern California D NBR SE/AT yes 

Hedel and Vance 
2007 

German Mobility 
Panel Survey D LNR/PRR SE/OT no 

Hess et al. 1999 
12 neighborhood 
commercial centers in 
Seattle 

A LNR SE no 

Holtzclaw et al. 
2002 

Chicago/Los 
Angeles/San 
Francisco 

A NLR SE no 

Joh et al. 2009a 8 neighborhoods in 
Southern California D LNR SE/CR/AT yes 

Khattak and 
Rodriguez 2005 

2 neighborhoods in 
Chapel Hill D NBR SE/AT yes 

Kitamura et al. 5 communities in San D LNR SE/AT yes 
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1997 Francisco region 

Kockelman 1997 San Francisco Bay D LNR/LGR SE no 

Kuby et al. 2004 
268 LRT stations in 
nine metropolitan 
areas 

A LNR ST/OT no 

Kuzmyak et al. 
2006 Baltimore D LNR SE no 

Kuzmyak 2009a Los Angeles D LNR SE no 

Kuzmyak 2009b Phoenix D LNR SE no 

Lee and Moudon 
2006a Seattle D LGR SE/LS yes 

Lund 2003 8 neighborhoods in 
Portland D LNR SE/AT yes 

Lund et al. 2004 40 TODs in four 
California regions D LGR SE/LS/WP/AT yes 

Naess 2005 29 neighborhoods in 
Copenhagen D LNR SE/WP/AT yes 

Pickrell and 
Schimek 1999 

Nationwide Personal 
Transportation Survey D LNR SE no 

Plaut 2005 American Housing 
Survey D LGR SE/OT no 

Pushkar et al. 2000 795 zones in Toronto A SLE SE/LS no 

Rajamani et al. 
2003 Portland  D LGR SE/LS no 

Reilly 2002 San Francisco D LGR SE/OT no 

Rodriguez and Joo 
2004 Chapel Hill, NC D LGR SE/LS/OT no 

Rose 2004 3 neighborhoods in 
Portland D LNR/POR SE no 
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Schimek 1996 Nationwide Personal 
Transportation Survey D SLE SE no 

Shay et al. 2006 one neighborhood in 
Chapel Hill D NBR SE/AT yes 

Shay and Khattak 
2005 

2 neighborhoods in 
Chapel Hill D LNR/NBR SE no 

Shen 2000 Boston A LNR SE no 

Sun et al. 1998 Portland  D LNR SE no 

Targa and Clifton 
2005 Baltimore D POR SE/AT yes 

Zegras 2006 Santiago D LNR/LGR SE no 

Zhang 2004 Boston/Hong Kong D LGR SE/LS/OT no 

Zhou and 
Kockelman 2008 Austin D LNR/PRR SE yes 
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Abbreviations: 

A=aggregate 

D=disaggregate 

GEE=generalized estimating equations 

HLM=hierarchical linear modeling 

LGR=logistic regression 

LNR=linear regression 

NBR=negative binomial regression 

NLR=nonlinear regression 

OPR = ordered probit regression 

POR=Poisson regression 

PRR=probit regression 

PSM=propensity score matching 

PSS=propensity score stratification 

SLR = simultaneous linear equations 

SUR=seemingly unrelated regression 

TOR=Tobit regression 

AT=attitudinal variables 

CR=crime variables 

LS=level of service variables 

OT=other variables 

SE=socioeconomic variables 

ST=station variables 

WP=workplace variables 
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* Per Cao et al. (2009a), nine different approaches have been used to control for 
residential self-selection.  From least to most rigorous, they range from direct 
incorporation of attitudinal measures in multivariate regression models to jointly 
estimated models of residential choice and travel behavior, where residential choice is 
treated as an endogenous variable. 

Common Metrics 

To combine results from different studies, a meta-analysis requires a common measure of 
effect size, a “common denominator” if you will.  Our common metric is the elasticity of 
some travel outcome with respect to one of the D variables. An elasticity is a percentage 
change in one variable with respect to a one percent change in another variable (actually, 
the ratio of infinitely small changes).  It is a dimensionless (unit-free) metric that 
measures the strength of association between two variables.  Elasticities are the most 
widely used measures of effect size in economic and planning research. 

For continuous outcomes such as number of walk trips, elasticities are the percent change 
in the outcome variable with respect to a one percent increase in the independent 
variables.  For discrete outcomes such as the choice of walking over other modes, 
elasticities are the percent change in the probability of choosing a particular alternative 
when an independent variable is increased by one percent. Although they are not 
identical, these elasticities can be compared to demand elasticities because they also can 
be interpreted as the percent change in the market share (similar to demand) of the 
particular alternative when an independent variable is increased by one percent. 

Individual Elasticities 

For individual studies, elasticity estimates were derived in one of four ways (as in Ewing 
and Cervero, 2001):  (1) from published studies, taken at face value; (2) from regression 
coefficients and mean values of dependent and independent variables (called “midpoint 
elasticities”), either as reported in original studies or obtained directly from researchers; 
(3) from data sets already available to the authors, or made available by other researchers; 
or (4) by the original researchers at the authors’ behest.   

Different formulas were used to compute elasticities for the different studies, in keeping 
with the different statistical methods used to estimate coefficient values (see Table 1 for 
statistical methods).  The formulas employed are presented in Table A-3 (where ȕ 
represents the regression coefficient value, yo the mean value of the travel variable of 
interest, and xo the mean value of the built environmental variable of interest). 

Table A-3.  Elasticity Estimation Formulas 

Regression Specification Elasticity 

Linear ȕ xo/ yo 
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log-log Ǻ 

log-linear ȕ xo 

linear-log ȕ / yo 

Logistic ȕ xo (1 - yo/n)* 

Poisson ȕ xo 

negative binomial ȕ xo 

Tobit ȕ xo/ yo (for yo > 0)** 

* yo/n is the mean estimated probability of occurrence. 

** Applied only to positive values of the Tobit distribution. 

When regression coefficients were statistically significant, elasticities were computed 
from reported coefficients using the formulas above.  When regression coefficients were 
not significant, we had a choice: drop the observations, substitute zero values for the 
elasticities since the coefficients were not statistically different from zero, or use the 
reported coefficients to compute elasticities using the formulas above.  Dropping the 
observations would have biased average elasticity values away from the null hypothesis 
of zero elasticity, and thus was rejected.  Substituting zero values for computed 
elasticities would have had the opposite effect, biasing average values toward the null 
hypothesis, and was therefore also rejected.  Instead we used the best available estimates 
of central tendency in all cases, the regression coefficients themselves, to compute 
elasticities. This is the common approach in meta-analysis (see, for example, Melo et al. 
2009).  Borenstein et al. (2009) argue against the use of significance levels as proxies for 
effect size since they depend not only on effect size but on sample size.  “Because we 
work with the effect sizes directly we avoid the problem of interpreting nonsignificant p-
values to indicate the absence of an effect (or of interpreting significant p-values to 
indicate a large effect)” (Borenstein et al. 2009, p. 300). 

Ideally, elasticities would have been computed for each observation 
(trip/traveler/household) individually, and then averaged over the sample.  Indeed, a few 
of the researchers who reported elasticities have done exactly that (e.g., Bento et al. 2003 
and Rodriguez and Joo 2004).  To do so consistently would have required all other 
researchers to go back and compute elasticities for each observation, assuming a 1% 
change in each independent variable, estimate the % change in the dependent variable, 
and then average over the sample.  Obviously, this would have been too much to ask of 
busy people, and we have instead estimated elasticities at the overall sample means of the 
dependent and/or independent variables.   
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While commonplace, this procedure could introduce a fair amount of error in the 
elasticity estimates.  Elasticities calculated at mean values of dependent and independent 
variables may differ significantly from the average values of individual elasticities due to 
the nonlinear nature of many of the functions involved (logistic functions, for example).  
“In general, the probability evaluated at the average utility underestimates the average 
probability when the individuals’ choice probabilities are low and overestimates when 
they are high” (Train 1986: 42). Talvitie (1976, as cited by Train) found, in a mode 
choice analysis, that elasticities at the average representative utility can be as much as 
two to three times greater or less than the average of individual elasticities.  This is a 
concern, we note, with discrete-choice models versus linear regression-based analyses 
that, as revealed in Table A-2, are more common in the study of built environments and 
travel.  

Weighted Average Elasticities 

Given individual elasticities from primary studies, we were able to compute weighted 
average elasticities for many dependent-independent variable pairs.  Weighted average 
elasticities are presented in Tables A-4 through A-6.  Averages are presented where three 
conditions are met:  (1) a sample of at least three studies was available; (2) for these 
particular studies, dependent and independent variables were comparably defined; and (3) 
for these particular studies, disaggregate travel data were used to estimate models.  Study 
sample sizes are as indicated in Table A-4 through A-6. 

These results should be used only as ballpark estimates for two reasons.  The first is our 
choice of minimum sample size required to conduct a meta-analysis.  The second is our 
choice of weighting factor to compute weighted average elasticities.   

Regarding the first reason, sample size, we settled on a minimum number of three studies 
due to data limitations (as in Tompa et al. 2008).  While the built environment and travel 
is the most heavily researched subject in urban planning, when studies are segmented by 
variable type, we are left with samples that never reach what some would consider a 
reasonable minimum sample size (Lau et al. 2006).  Also, to maximize our sample sizes, 
we mixed the relatively few studies that control for self-selection with the many that do 
not.  Readers are advised to exercise caution in the use of elasticities when based on 
small samples of primary studies.  Because we have sought to seed the meta-study of 
“built environments and travel” with the expectation that others will augment and expand 
our database over time, we opted to present elasticity estimates as long as they were 
drawn from three or more studies.  We quote one study from another field that settled on 
seven studies as a minimum for a meta-analysis (Rodenburg et al., 2009): 

“Some limitations of this meta-analytic study should be mentioned. Although the 
minimum number of studies to permit a meta-analysis is only three studies 
(Treadwell, Tregear, Reston & Turkelson, 2006) and many published meta-
analyses contain nine or fewer studies (Lau, Ioannidis, Terrin, Schmid & Olkin, 
2006), the small number of seven studies included in this meta-analytic review 
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limits the generalizability of our findings and the possibilities of examining and 
adjusting for publication bias by means of more complex analytic methods 
(Macaskill, Walter & Irwig, 2001).” 

Regarding the second reason, weighting, we used sample size as a weighting factor, 
again, due to data limitations.  The optimal way to estimate average effect size is to 
weight each effect size value by a term that represents its precision.  Hedges and Olkin 
(1985) demonstrated that optimal weights are related to the standard errors of the effect 
size estimates, and this has become the gold standard in meta-analysis.  Specifically, 
because larger standard errors correspond to less precise effect size values, the actual 
weights are computed as the inverse of the squared standard error values—called inverse 
variance weights in a meta-analysis (Lipsey and Wilson 2001; Hunter and Schmidt 2004; 
Schulze 2004; Littell et al. 2008; Borenstein et al. 2009).  From a statistical standpoint, 
such weights are optimal since they minimize the variance of the average effect size 
estimates.  Intuitively, such weights also make sense since they give the greatest weight 
to the most precise estimates from individual studies. 

In this meta-analysis, optimal pooling procedures weren’t feasible.  Lacking consistent 
standard error estimates from individual studies, we were forced to use sample size as the 
weighting factor.  Weighting by sample size is by far the most common approach in 
meta-analyses since sample sizes are nearly always known (Shadish and Haddock 1994, 
p. 264).  Inasmuch as variances of estimated effects decrease with increasing sample size, 
weighting by sample size may produce weighted averages that are not too different from 
those that would have been obtained using an optimal weighting scheme.  However, 
when any weighting factor other than standard error is used, it is not possible to judge 
whether the resulting weighted averages are statistically different from zero.  Since we 
combine significant and insignificant individual effect sizes, and because of data 
limitations, do not test for significance, statistical confidence is not reported for any of 
the results.  It is thus possible that any given meta-elasticity is not significantly different 
from zero.     

Table A-4. Weighted Average Elasticities of VMT with Respect to Built Environment 
Variables 

 n total (n 
with 
controls for 
self 
selection) 

e 

DENSITY   

household/population 
density 

9 (1) -0.04 

job density 5 (1) 0.0 
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DIVERSITY   

land use mix 
(entropy index) 

10 (0) -0.09 

job-housing balance 4 (0) -0.02 

DESIGN   

intersection/street 
density 

6 (0) -0.12 

% 4-way 
intersections 

3 (1) -0.12 

DESTINATION 
ACCESSIBILITY 

  

job accessibility by 
auto 

5 (0) -0.20 

job accessibility by 
transit 

3 (0) -0.05 

distance to 
downtown 

3 (1) -0.22 

DISTANCE TO 
TRANSIT 

  

distance to nearest 
transit stop 

6 (1) -0.05 

 

Table A-5. Weighted Average Elasticities of Walking with Respect to Built Environment 
Variables 

 n total (n 
with 
controls for 
self 
selection) 

e 

DENSITY   

household/population 
density 

10 (0) 0.07 

job density 6 (0) 0.04 

commercial FAR 3 (0) 0.07 
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DIVERSITY   

land use mix 
(entropy index) 

8 (1) 0.15 

job-housing balance 4 (0) 0.19 

distance to store 5 (3)  0.25 

DESIGN   

intersection/street 
density 

7 (2) 0.39 

% 4-way 
intersections 

5 (1) -0.06 

DESTINATION 
ACCESSIBILITY 

  

jobs within one mile 3 (0) 0.15 

DISTANCE TO 
TRANSIT 

  

distance to nearest 
transit stop 

3 (2) 0.14 

 
 
 

Table A-6. Weighted Average Elasticities of Transit Use with Respect to Built 
Environment Variables 

 n total (n 
with 
controls for 
self 
selection) 

e 

DENSITY   

household/population 
density 

10 (0) 0.07 

job density 6 (0) 0.01 

DIVERSITY   

land use mix 
(entropy index) 

6 (0) 0.12 
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DESIGN   

intersection/street 
density 

4 (0) 0.23 

% 4-way 
intersections 

5 (2) 0.29 

DISTANCE   

distance to nearest 
transit stop 

3 (1) 0.29 

 

Discussion 

As in our 2001 meta study, the D variable that is most strongly associated with VMT is 
destination accessibility.  The elasticity from the earlier meta study, -0.20, is confirmed 
by this meta-analysis (based on “job accessibility by auto”).  In fact, the -0.19 VMT 
elasticity is nearly as large as the highest elasticities of the first three D variables—
density, diversity, and design—combined.  This too is consistent with the earlier meta 
study.   

The variable with the next strongest relationship to VMT is proximity distance to 
downtown (the inverse of distance to downtown).  This variable is a proxy for many of 
the other Ds: living in the core city typically means higher densities in mixed-use settings 
with good regional accessibility.  Next  most strongly associated with VMT are design 
metrics expressed in terms of intersection density or street connectivity.  This is 
surprising, given the emphasis in the qualitative literature on density and diversity, and 
the relatively limited attention paid to design.  The elasticities of these two street network 
variables are fairly similar.  Both short blocks and many interconnections shorten travel 
distances, apparently to about the same extent.  

Equally surprising is the positive, albeit small, elasticity of VMT with respect to job 
density.  Conventional literature holds that density at the work end of trips is as important 
as density at the home end as a VMT moderator (Ewing and Cervero, 2001).  Since Table 
A-4 captures travel by residents, not employees, high job densities could reflect 
imbalanced environments that prompt some residents to travel farther by car. 

As walking and transit use were not addressed by Ewing and Cervero (2001), the results 
in Tables A-5 and A-6 have no benchmarks against which to compare them.  The mode 
share and likelihood of walk trips is most strongly associated with the design and 
diversity dimensions of built environments.  Several variables that often go hand-in-hand 
with population density have elasticities that are well above that of density.  Intersection 
density and jobs-housing balance appear to be most strongly associated with walking. A 
doubling of intersection density is accompanied by a 44 percent increase in walking, all 
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else being equal. Interestingly, intersection density is a more significant variable than 
street connectivity.  You can have great connectivity, but if the blocks are long 
superblocks, walkability may be limited.  Also of interest is the fact that jobs-housing 
balance has a stronger relationship to walking than the more commonly used land use 
mix (entropy) variable.  Table A-5 also suggests  that having transit stops nearby may 
stimulate walking (Cervero, 2001; Ryan and Frank, 2009).  On the other hand, high job 
accessibility by car may discourage walking.  Finally, Table 5 shows that as with VMT, 
job density is less strongly related to walking than is population density.  

The mode share and likelihood of transit trips are most strongly associated with transit 
access.   Living near a bus stop appears to be an inducement to transit riding, supporting 
the transit industry’s standard of running buses within a quarter mile of most residents.  
Next in importance are design (intersection density) and diversity (jobs-housing balance).  
High intersection density shortens access distances, and provides more routing options 
for transit users.  Jobs-housing balance makes it possible to efficiently link transit trips 
with errands on the way to and from transit stops.  It is sometimes said that “mass transit 
needs ‘mass’”, however this is not supported by the low elasticity of population density 
in Table 6.  In fact, the elasticity of transit riding with respect to retail density is three 
times greater than that of population density.  High retail FAR increases the number of 
trip attractions near transit and may improve the walking environment.   

No clear pattern emerges from scanning across the Tables A-4 to A-6.  Perhaps what can 
be said with the most degree of confidence is that destination accessibility is most 
strongly related to both motorized (i.e., VMT) and non-motorized (i.e., walking) travel 
and that among the remaining Ds, density has the weakest association.  The primacy of 
destination accessibility may be due to lower levels of auto ownership and auto 
dependence at central locations.  Almost any development in a central location is likely to 
generate less automobile travel than the best-designed, compact, mixed-use development 
in a remote location.  

The relatively weak relationships between density and travel likely reflect density’s role 
as an intermediate variable that ultimately gets expressed by the other Ds – i.e., dense 
settings usually have mixed uses with small blocks and plentiful intersections that shorten 
trips and encourage walking. Among design variables, intersection density more strongly 
sways the decision to walk or take transit than street connectivity.  This suggests that 
block size matters more than gridded designs if significant numbers of Americans are to 
be lured out of their cars. And among diversity variables, jobs-housing balance is a 
stronger predictor of non-auto mode choice than land-use mix measures.  Linking where 
people live and work allows more to commute by foot and by transit which appears to 
shape mode choice more than sprinkling a multiplicity of land uses within a 
neighborhood. 

Controls for residential self-selection appear to increase the absolute magnitude of 
elasticities (if they have any effect at all).  There may be good explanations for this 
unexpected result.  In a region with few pedestrian- and transit-friendly neighborhoods, 
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residential self-selection may lead to better matching of individual preferences with place 
characteristics, actually increasing the effect of the D variables.  This possibility is 
posited by Lund et al. (2006, p. 256). 

“. . . if people are simply moving from one transit-accessible location to another 
(and they use transit regularly at both locations), then there is theoretically no 
overall increase in ridership levels. If, however, the resident was unable to take 
advantage of transit service at their prior residence, then moves to a TOD (transit-
oriented development) and begins to use the transit service, the TOD is fulfilling a 
latent demand for transit accessibility and the net effect on ridership is positive.” 

Similarly, Chatman (2009) hypothesizes that “Residential self-selection may actually 
cause underestimates of built environment influences, because households prioritizing 
travel access—particularly, transit accessibility—may be more set in their ways, and 
because households may not find accessible neighborhoods even if they prioritize 
accessibility.” He carries out regressions that explicitly test for this, and finds that self-
selection is more likely to enhance than diminish built environmental influences.  

The elasticities derived in this meta-analysis are based on arguably the most complete 
data available to date.  However, sample sizes are small, and the number of studies 
controlling for residential preferences and attitudes is still miniscule. Also, data 
limitations prevent us from reporting confidence intervals for meta-analysis results. 
These shortcomings need to be weighed when applying results to any particular context 
or local setting.  As more built environment-travel studies appear in the planning 
literature, it will be necessary to update and refine these meta-analytic results. 


